Table 3. Close intermolecular contacts between nonhydrogen atoms
Symmetry operations listed were performed on the first atom. Distances are in \AA.

F(3) .. $\mathrm{C}(2)$	$x, y-1, z-1$	3.416 (4)
C(1)..C(4)	$x-1, y, z$	3.427 (4)
F(2) \cdots F(1)	$x-1, y, z$	3.414 (3)
F(2) $\cdots \mathrm{F}(3)$	$x-1, y, z$	3.300 (3)
$\mathrm{N}(9) \cdots \mathrm{C}(5 \mathrm{a})$	$x-1, y, z$	3.216 (3)
$\mathrm{N}(9) \ldots \mathrm{C}(6)$	$x-1, y, z$	3.468 (4)
$\mathrm{O}(9 B) \cdots \mathrm{C}(4 \mathrm{a})$	$x-1, y, z$	3.123 (3)
$\mathrm{O}(9 B) \cdots \mathrm{N}(5)$	$x-1, y, z$	$3 \cdot 192$ (3)
$\mathrm{O}(9 B) \cdots \mathrm{C}(5 \mathrm{a})$	$x-1, y, z$	$3 \cdot 161$ (4)
$\mathrm{O}(9 B) \cdots \mathrm{C}(9 \mathrm{a})$	$x-1, y, z$	3.155 (4)
$\mathrm{O}(9 B) \cdots \mathrm{N}(10)$	$x-1, y, z$	3.122 (3)
$\mathrm{C}(2) \cdots \mathrm{N}(9)$	1-x, 1-y, 1-z	3.265 (4)
$\mathrm{C}(2) \cdots \mathrm{O}(9 A)$	$1-x, 1-y, 1-z$	3.499 (4)
C(2) $\cdots \mathrm{O}(98)$	$1-x, 1-y, 1-z$	3.440 (3)
$\mathrm{C}(3) \cdots \mathrm{O}(9 A)$	$1-x, 1-y, 1-z$	3.348 (4)
$\mathrm{C}(1) \cdots \mathrm{O}(98)$	$2-x, 1-y, 1-z$	3.270 (4)
$\mathrm{O}(9 B) \cdots \mathrm{O}(9 B)$	$2-x, 1-y, 1-z$	3.076 (2)
C(4) $\cdots \mathrm{F}(1)$	-x, 1-y, 2-z	3.315 (4)
$\mathrm{N}(5) \cdots \mathrm{F}(1)$	-x, 1-y, 2-z	3.401 (3)
C(4) $\cdots \mathrm{F}(1)$	1-x, 1-y, 2-z	3.377 (4)
C (4) $\cdots \mathrm{F}$ (2)	$1-x, 1-y, 2-z$	3.318 (3)
$\mathrm{C}(4 \mathrm{a}) \cdots \mathrm{F}(1)$	$1-x, 1-y, 2-2$	3.202 (3)
C(5a)...C(6)	$1-x, 1-y, 2-z$	3.426 (4)
$\mathrm{F}(1) \cdots \mathrm{N}(10)$	$1-x, 1-y, 2-z$	3.484 (2)
$\mathrm{F}(3) \ldots \mathrm{C}(8)$	$1-x, 2-y, 2-z$	3.389 (2)
$\mathrm{F}(3) \cdots \mathrm{O}(9 A)$	$1-x, 2-y, 2-z$	3.304 (3)
$\mathrm{F}(2) \cdots \mathrm{O}(9 A)$	$2-x, 2-y, 2-z$	2.989 (2)
$\mathrm{F}(3) \cdots \mathrm{O}(9 A)$	$2-x, 2-y, 2-z$	3.429 (3)

displaced $0.05-0.06 \AA$ in the opposite direction. If the molecules were not bowed, $\mathrm{O}(9 B)$-diazole ring contacts would be even shorter.

Fluorines of trifluoromethyl groups frequently have high thermal parameters (Chu \& Napoleone, 1981; Allen, March \& Nowell, 1984), and are sometimes
disordered (Valle, Toniolo \& Bonora, 1985). Consequently, the $\mathrm{C}-\mathrm{F}$ bond distances reported are usually shorter than the distances reported here. In the packing environment for this molecule, the trifluoromethyl cannot rotate freely without incurring unfavorable short contacts with $\mathrm{O}(9 A)(2.45 \AA)$ and with $\mathrm{C}(2)(2.63 \AA)$. The $\mathrm{C}-\mathrm{F}$ distances of $1.34 \AA$ for this structure are closer to the $\mathrm{C}-\mathrm{F}$ single-bond length, $1.37 \AA$, calculated by Pauling (1960).

We gratefully acknowledge the expert technical assistance of Charlotte Waber.

References

Allen, D. W., March, L. A. \& Nowell, I. W. (1984). J. Chem. Soc. Dalton Trans. pp. 483-485.
Anderson, D. J. \& Taylor, A. J. (1986). J. Heterocyclic Chem. In the press.
Chu, S. S. C. \& Napoleone, V. (1981). Acta Cryst. B37, 1945-1953.
Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-397.
Duchamp, D. J. (1977). ACS Symp. Ser. 46, 98-121.
Duchamp, D. J. (1978). DIREC. A direct methods program for solving crystal structures. The Upjohn Company, Kalamazoo, Michigan.
Duchamp, D. J. (1984). CRYM. A system of crystallographic programs. The Upjohn Company, Kalamazoo, Michigan.
Nyburg, S. C. \& Faerman, C. H. (1985). Acta Cryst. B41, 274-279.
Pauling, L. (1960). The Nature of The Chemical Bond, pp. 260, 229. Ithaca: Cornell Univ. Press.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Valle, G., Tonolo, C. \& Bonora, G. M. (1985). Acta Cryst. C41, 235-238.

Acta Cryst. (1986). C42, 1771-1773

\boldsymbol{N}-n-Butylpyridinium Chloride
 By Donald L. Ward,* Rick R. Rhinebarger and Alexander I. Popov
 Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, USA

(Received 12 March 1986; accepted 25 June 1986)

Abstract

C}_{9} \mathrm{H}_{14} \mathrm{~N}^{+} . \mathrm{Cl}^{-}, M_{r}=171 \cdot 67\), orthorhombic, $P 2_{12} 2_{1} 1_{1}, \quad a=8.095$ (3),$\quad b=10.621$ (4), $\quad c=$ $11.419(5) \AA, \quad V=981.8(6) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.16 \mathrm{Mg} \mathrm{m}^{-3}$, Мо $K \alpha, \lambda=0.71073 \AA, \mu=3.3 \mathrm{~cm}^{-1}$, $F(000)=368, \quad T=298(1) \mathrm{K}, \quad R=0.053$ for 1307 [$I>3 \sigma(I)$] of 1676 unique reflections. N - n-butylpyridinium chloride (BPCl) was crystallized from a $\mathrm{BPCl}-\mathrm{AlCl}_{3}$ molten salt. The n-butyl chain of the

[^0]0108-2701/86/121771-03\$01.50
cation is in extended staggered form and is approximately perpendicular to the plane of the pyridinium ring.

Introduction. Mixtures of N - n-butylpyridinium chloride (BPCI) and aluminium(III) chloride constitute an interesting continuum of ambient-temperature molten salt media which behave as somewhat unusual 'nonaqueous' solvents. These melts have been studied rather intensively by a number of investigators not only © 1986 International Union of Crystallography
because of their intrinsic interest but also since they have a number of important industrial applications. (An excellent discussion of these media can be found in Gale \& Osteryoung, 1983.)

In the course of a detailed study of complexation reactions (Taulelle \& Popov, 1983; Rhinebarger, Rovang \& Popov, 1984; Rhinebarger \& Popov, 1986) we obtained single crystals of $N-n$-butylpyridinium chloride. Its structure is of interest to us and to others in the field.

Experimental. Crystals of BPCl were obtained by diluting a $45: 55 \mathrm{~mol} \% \mathrm{BPCl}-\mathrm{AlCl}_{3}$ mixture with benzene and allowing the mixture to stand overnight. Resulting crystals were washed with benzene to remove the adhering melt and dried at $1.3 \times 10^{-3} \mathrm{~Pa}$ and room temperature for one week to remove the benzene.

Irregular shape, colorless, $0.6 \times 0.6 \times 0.6 \mathrm{~mm}$; Nicolet $P 3 F$; 15 reflections, $10<\theta<12.5^{\circ}$; empirical absorption correction based on ψ scans, 0.971 to 1.00 relative factors; $\sin \theta / \lambda<0.7049 \AA^{-1} ; \quad 0 \leq h \leq 11$, $0 \leq k \leq 14,0 \leq l \leq 16 ; 400292250$ to 314600,040

Table 1. Refined positional parameters (e.s.d.'s in parentheses) and thermal parameters

	x	y	z	$U\left(\AA^{2}\right)$
$\mathrm{Cl}(1)$	0.4606 (1)	0.21108 (9)	$0 \cdot 10652$ (8)	0.0503 (1)
N(1)	0.5985 (4)	0.4998 (3)	0.7124 (3)	0.0494 (8)
C(2)	0.5739 (5)	0.4242 (4)	0.8060 (3)	0.0512 (10)
C(3)	0.4216 (6)	0.4147 (4)	0.8551 (3)	0.0583 (11)
C(4)	0.2925 (6)	0.4827 (4)	0.8101 (4)	0.0659 (13)
C(5)	0.3194 (6)	0.5600 (4)	0.7155 (4)	0.0645 (11)
C(6)	0.4725 (6)	0.5670 (3)	0.6671 (3)	0.0576 (10)
C(7)	0.7661 (6)	$0 \cdot 5055$ (6)	0.6573 (5)	0.0785 (13)
C(8)	0.7948 (6)	0.3980 (6)	0.5757 (4)	0.0963 (13)
C(9)	0.6848 (8)	0.3552 (6)	0.4952 (5)	$0 \cdot 1368$ (25)
C(10)	0.7315 (7)	0.2536 (5)	0.4122 (5)	0.0912 (13)
H(2)	0.673 (5)	0.382 (4)	0.836 (3)	0.070 (13)*
H(3)	0.412 (5)	0.350 (4)	0.919 (4)	0.086 (15)*
H(4)	0.183 (5)	0.472 (4)	0.842 (3)	0.071 (14)*
H(5)	0.232 (5)	0.599 (4)	0.686 (4)	0.082 (15)
H(6)	0.495 (5)	0.622 (3)	0.599 (3)	0.075 (13)*
H(7a)	0.843 (6)	0.497 (4)	0.716 (4)	0.096 (16)*
H(7b)	0.761 (5)	0.584 (4)	0.616 (4)	0.081 (14)*

Starred atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as: $\left(1 / 6 \pi^{2}\right)\left[a^{2} \beta(1,1)+b^{2} \beta(2,2)+c^{2} \beta(3,3)+\right.$ $a b(\cos \gamma) \beta(1,2)+a c(\cos \beta) \beta(1,3)+b c(\cos \alpha) \beta(2,3)]$.

Table 2. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{N}(1)-\mathrm{C}(2)$	$1.352(5)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.374(7)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.348(6)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.359(7)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.497(6)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.491(8)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.358(6)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.358(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.371(6)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.485(8)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)$	$120.4(3)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$119.8(4)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(7)$	$119.3(4)$	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$120.3(4)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(7)$	$120.2(4)$	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$111.9(4)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120.3(4)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$125.3(5)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.9(4)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.6(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.2(4)$		

798082 to 825692,0041380978 to $1430714 ; 1683$ measured; 1676 unique; $R_{\text {int }}=0.003$, 12 data; 369 unobserved; $I<3 \sigma(I)$; direct methods; refinement using F; H atoms at calculated positions, those on $\mathrm{C}(8)$, $\mathrm{C}(9)$ and $\mathrm{C}(10)$ riding on attached atoms; anisotropic non-H atoms, isotropic $\mathrm{H}=129$ parameters; $R=$ $0.053, w R=0.049, S=0.59 ; w=1.0 ; \Delta / \sigma<0.20$; $-0.60(5)<\Delta \rho<0.56(5)$ e \AA^{-3}; extinction $3.21 \times$ 10^{-6}; scattering factors (Cromer \& Waber, 1974), f^{\prime} and $f^{\prime \prime}$ (Cromer, 1974); SDP (Frenz, 1978).

Discussion. The refined atomic coordinates and isotropic temperature factors are presented in Table 1; bond distances and bond angles are given in Table 2; the molecular structure and the numbering of the atoms are shown in Fig. 1 and the stereographic packing diagram is shown in Fig. 2.*

[^1] lography, 5 Abbey Square, Chester CHI 2HU, England.

Fig. 1. The molecular structure and the numbering of the atoms. [ORTEP (Johnson, 1965), 50\% probability ellipsoids.]

Fig. 2. Stereographic packing diagram. [ORTEP (Johnson, 1965), 20% probability ellipsoids.] The c axis is vertical, the b axis is horizontal and the a^{*} axis is normal to the page.

The bond angles and distances within the pyridinium ring seem normal with angles ranging from 119.2 (4) to $120.4(3)^{\circ}$ and distances ranging from $1.352(5)$ to 1.374 (7) \AA; the ring is planar to within ± 0.005 (5) \AA. The n-butyl chain exhibits some signs of disorder involving $C(9)$ and $C(8)$ as shown by shortened bonds among the chain carbon atoms and by the instability during least-squares refinement of the H atoms bonded to $C(8), C(9)$ and $C(10)$. The H atoms bonded to $C(8)$, $C(9)$ and $C(10)$ were finally placed in ideal positions and constrained to ride on their attached C atom to enable the least-squares refinement to converge with a reasonable model of the molecular structure.

The n-butyl chain is in the extended staggered form with a torsion angle $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ of $175.3(5)^{\circ}$. The n-butyl chain junction with the pyridinium ring is of non-extended staggered form with the torsion angle $\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ of 44.7 (7) ${ }^{\circ}$; therefore, the n-butyl chain lies approximately normal to the plane of the pyridinium ring with torsion angles $\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8) \quad 81 \cdot 5$ (5) and $\mathrm{C}(6)-\mathrm{N}(1)-$ $\mathrm{C}(7)-\mathrm{C}(8)-96.9$ (5) ${ }^{\circ}$.

The chloride ion lies in a hole bounded by the edges of pyridinium rings with five $\mathrm{Cl} \cdots \mathrm{H}$ contacts in the range 2.553 to $2.720 \AA$; four n-butyl chains give six $\mathrm{Cl} \cdots \mathrm{H}$ contacts in the range 3.133 to $3.389 \AA$. The shortest non-H contact with Cl is $3.516 \AA$ and the
shortest $\mathrm{Cl} \cdots \mathrm{Cl}$ distance is $4.794 \AA$ to Cl^{-}ions at $\pm 0.5+x, 0.5-y,-z$.

The authors gratefully acknowledge the support of this work by National Science Foundation grant CHE-8515474. The X-ray diffractometer system was provided by NSF grant CHE-8403823.

References

Cromer, D. T. (1974). International Tables for X-ray Crystallography. Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography. Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Determination. In Computing and Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi. Delft Univ. Press.
Gale, R. J. \& Osteryoung, R. A. (1983). Haloaluminates. In Molten Salt Techniques, edited by D. G. Lovering \& R. J. Gale, pp. 55-78. New York: Plenum.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Rhinebarger, R. R. \& Popov, A. I. (1986). Inorg. Chem. In the press.
Rhinebarger, R. R., Rovang, J. W. \& Popov, A. I. (1984). Inorg. Chem. 23, 2557-2558.
Taulelle, F. \& Popov, A. I. (1983). Polyhedron, 2, 889-894.

Structures of Three Diels-Alder Adducts of Hexacyclo[10.2.1.0 $0^{2,11} .0^{4,9} .0^{4,14} .0^{9,13}$]-pentadeca-5,7-diene-3,10-dione

By James M. Coxon, Michael J. O’Connell and Peter J. Steel
Chemistry Department, University of Canterbury, Christchurch, New Zealand

(Received 2 May 1986; accepted 24 June 1986)

Abstract

V) Octacyclo[10.6.2.15,8.0 2,6. $0^{2,11} .0^{4,9}$.$\left.0^{7,11} \cdot 0^{13,18}\right]$ henicosa-15,19-diene-3,10,14,17-tetraone, $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{4}, \quad M_{r}=332.4$, monoclinic, $P 2_{1} / m, \quad a=$ 7.175 (1),$\quad b=11.920$ (3),$\quad c=8.622$ (1) $\AA, \quad \beta=$ $100 \cdot 18(1)^{\circ}, \quad U=725 \cdot 8 \AA^{3}, \quad Z=2, \quad D_{m}=1 \cdot 54, \quad D_{x}$ $=1.52 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $9.8 \mathrm{~mm}^{-1}, F(000)=348, T=130 \mathrm{~K}, R=0.042$ for 808 independent observed reflections. (VI) 15-Oxaoctacyclo[10.5.2.1 $\left.{ }^{5,8} \cdot 0^{2,6} \cdot 0^{2,11} \cdot 0^{4,9} \cdot 0^{7,11} \cdot 0^{13,17}\right]$ icos-18-ene-3,10,14,16-tetraone, $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{5}, M_{r}=322 \cdot 3$, monoclinic, $\quad P 2_{1} / n, \quad a=12.521(3), \quad b=6.369(2), \quad c=$ 17.604 (4) $\AA, \beta=107.09$ (2) ${ }^{\circ}, \quad U=1342 \AA^{3}, Z=4$, $D_{m}=1.59, \quad D_{x}=1.60 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=$

0108-2701/86/121773-05\$01.50

$0.71069 \AA, \mu=10.8 \mathrm{~mm}^{-1}, F(000)=672, T=130 \mathrm{~K}$, $R=0.052$ for 1578 independent observed reflections. (VII) 13,14-Bis(methoxycarbonyl)heptacyclo[10.2.2.1 $\left.1^{5,8} \cdot 0^{2,6} \cdot 0^{2,11} \cdot 0^{4,9} \cdot 0^{7,11}\right]$ heptadeca-13,15-diene-3,10-dione, $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{6}, M_{r}=366 \cdot 4$, monoclinic, $P 2_{1} / c$, $a=12.257$ (4), $b=6.858$ (2), $c=19.610$ (5) $\AA, \beta=$ $90.09(2)^{\circ}, \quad U=1648 \AA^{3}, \quad Z=4, \quad D_{m}=1.44, \quad D_{x}=$ $1.48 \mathrm{Mg} \mathrm{m}^{-3}$, Мo $K \alpha, \lambda=0.71069 \AA, \mu=10.1 \mathrm{~mm}^{-1}$, $F(000)=768, T=130 \mathrm{~K}, \quad R=0.038$ for 2104 in dependent observed reflections. The benzoquinone and maleic anhydride adducts, (V) and (VI), result from Alder attack of the dienophile on the carbonyl-bearing face of the diene, whereas the dimethyl acetylene
(c) 1986 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors and tables of anisotropic thermal parameters, least-squares planes, torsion angles, root-mean-square amplitudes of thermal vibration, and atomic parameters and bond angles and distances involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43186 (28 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystal-

